

Vamac® Ethylene Acrylic Elastomer Compound - Technical Data

Description

VMX5000 Series Pre-Compounds for Improved Heat Resistance

For demanding applications requiring high heat resistance, the VMX5000 series of Vamac® pre-compounds offer superior performance.

Until the introduction of the VMX5000 series, AEM compounds relied on fillers like carbon black or silica to provide strength and stiffness for a finished article. These fillers, however, accelerate oxidative degradation. VMX5000 series pre-compounds eliminate this problem by utilizing a novel filler system that actively extends the life of AEM articles exposed to hot air. As a result, finished parts based on VMX5000 series pre-compounds last up to three times longer at any given temperature compared to AEM compounds containing conventional fillers. Compounds based on the VMX5000 series are also lighter weight, with up to 15% lower specific gravity.

The improved heat ageing performance of VMX5000 series pre-compounds benefits automotive applications such as turbocharger hose and molded air ducts, with specific advantages for seals and gaskets. Compounds made with VMX5000 grades exhibit significantly improved compressive stress relaxation properties in air, as well as in long term compression set.

While VMX5000 series pre-compounds may be extended with AEM elastomer, plasticizer or small amounts of conventional filler like carbon black, in some cases no additional filler may be required. VMX5000 compounds also provide a route to bright colored finished articles having superior physical properties and heat ageing resistance compared to mineral filled AEM compounds.

Handling Precautions

Because Vamac® ethylene-acrylic elastomers contain small amounts of residual methyl acrylate monomer, adequate ventilation should be provided during storage and processing to prevent worker exposure to methyl acrylate vapor. Additional information may be found in the respective product Safety Data Sheet (SDS), and DuPont™ bulletin, *Safe Handling and Processing of Vamac*®.

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates Copyright © 2019 DuPont de Nemours Inc.

Vamac® Ethylene Acrylic Elastomer Compound - Technical Data

VMX5000 Series Product Range

Grade	ML (1+4) at 100 °C	Tg (by DSC) °C ¹	Density, g/cc	Key Feature
VMX5015	57	-30	1.07	Compression molding pre-compound ²
VMX5020	43	-30	1.07	Injection molding pre-compound ²

¹ Tg of compounds with Vamac® may be extended typically – 10°C lower with the addition of plasticizer.

VMX5000 series products are available in bale form, and the natural color is opaque creamy white to light pink. Bales are packaged in 23kg units with a blue strippable wrap in individual boxes. The strippable wrap must be completely removed prior to using the product. A full pallet will hold thirty individual boxes with a net weight of 690kg.

Improved Heat Resistance

VMX5000 series pre-compounds offer significantly improved heat resistance over conventional carbon black filled AEM or HT-ACM. Figure 1 shows AEM temperature rating based on three industry-accepted criteria: less than 50% loss in tensile strength and elongation, and less than 15-point change in Shore A hardness.

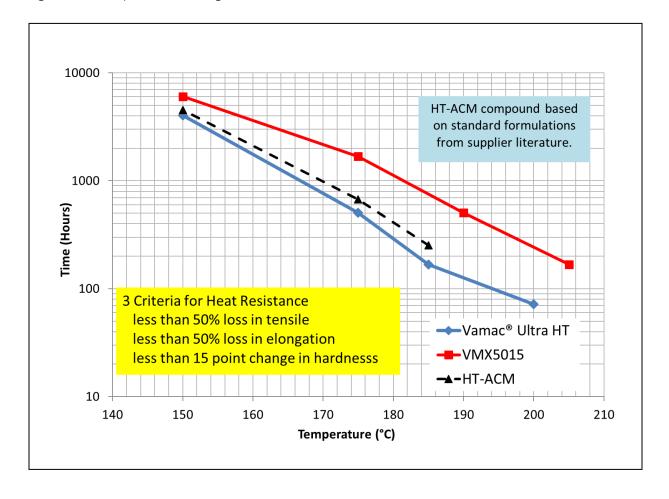
A significant increase in temperature rating is achieved with VMX5000 compared to black filled AEM or HT-ACM.

at 6 weeks	from 167°C to 182°C rating	(+15°C)
at 3 weeks	from 175°C up to 190°C rating	(+15°C)
at 1 week	from 185°C up to 205°C rating	(+ 20°C)

Likewise, when the temperature is held constant there is a significant increase in performance lifetime.

at 160°C	from 1800 hours up to 3600 hours	(2 x)
at 175°C	from 504 hours up to 1680 hours	(3.3 x)
at 185°C	from 168 hours up to 750 hours	(4.5 x)

dupont.com


DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates Copyright © 2019 DuPont de Nemours Inc.

² Not suitable for steam autoclave cure.

Vamac® Ethylene Acrylic Elastomer Compound - Technical Data

Figure 1 – Temperature Rating

dupont.com

DuPont``m, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates Copyright © 2019 DuPont de Nemours Inc.

Vamac® Ethylene Acrylic Elastomer Compound - Technical Data

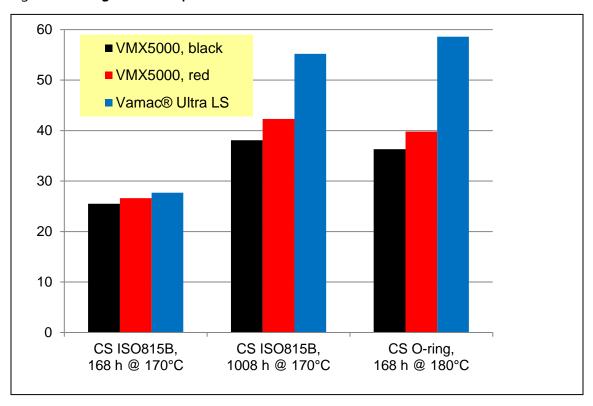
Improved Sealing Performance

Industry standard tests for sealing performance include compression set (CS) and compressive stress relaxation (CSR). Results of these tests for many elastomers, including AEM, can depend on sample geometry. When tested in air, a test specimen with a high surface area to volume ratio (like a D214 O-ring) experiences greater oxidation and therefore greater degradation of sealing properties than a larger specimen like an ASTM D395 type 1 button. Because many seals have small sealing beads, CS and CSR tests using large specimens can mask performance issues that may arise from in-service oxidation.

The improved heat ageing performance of VMX5000 pre-compounds therefore has significant benefit on long term compression set resistance, especially when tested using ISO buttons, or D214 O-rings. Figure 2 shows compression set results for 60 Shore A hardness compounds of VMX5020 / Vamac® Ultra IP blends with either carbon black (15phr) or red pigment (for colored compound), compared to a conventional carbon black filled Vamac® Ultra LS compound.

While all the compounds perform about equally when testing ISO buttons at 168 hours/170°C, the VMX5000 compound out performs the black-filled Ultra LS compound when the test time extends to 1008 hours, or when the specimen is switched to a D214 O-ring under conditions of 168 hours/180°C. Note the VMX5000 series compounds can tolerate small amounts of filler added for color or increasing hardness (typically by less than 10 points Shore A) without adversely affecting compression set or hot air ageing properties.

dupont.com

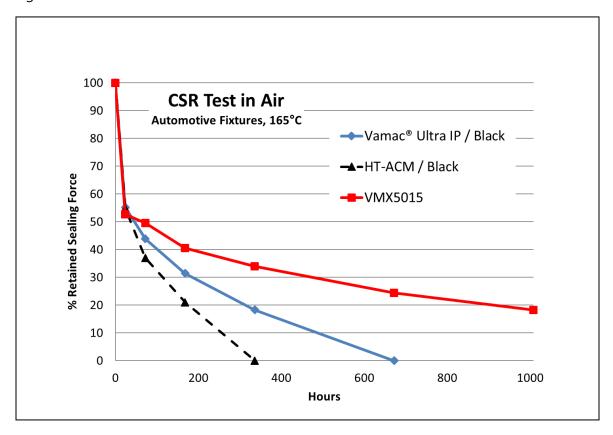


DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates Copyright © 2019 DuPont de Nemours Inc.

Vamac® Ethylene Acrylic Elastomer Compound - Technical Data

Figure 2 – Long Term Compression Set Resistance

dupont.com


DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.

Vamac® Ethylene Acrylic Elastomer Compound - Technical Data

Figure 3 shows compressive stress relaxation testing of ISO buttons in hot air for carbon black filled compounds of Vamac® Ultra IP, HT-ACM, and a VMX5015 compound containing 2phr N550 carbon black for color. The superior oxidative stability of the VMX5015 compound results in dramatically improved CSR performance.

Figure 3 – CSR in Hot Air

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates Copyright © 2019 DuPont de Nemours Inc.

Vamac® Ethylene Acrylic Elastomer Compound - Technical Data

Compounding VMX5000 Series Pre-Compounds

VMX5000 series compounds optimally contain about 20% lower Diak™1 levels than conventional AEM compounds, and use 4-aminodiphenylamine (ADPA) as the anti-oxidant. The preferred diarylamine anti-oxidants for carbon black or silica filled AEM compounds, like IPPD or Naugard® 445, do not perform as well in the VMX5000 series.

Table 2 shows starting point recipes where the amount of VMX5000 series pre-compound is set so that the compound comprise 100phr total AEM. As desired, additional AEM polymer may be added along with the VMX5000 pre-compound to adjust hardness or cure speed. Vamac® Ultra HT, Ultra IP, and GXF are suitable diluents. Vamac® Ultra IP provides faster curing.

Table 2 -Starting Recipes for VMX5000

Ingredient (phr)	75 ShA hose	60 ShA gasket
VMX5000 Grade	181.8	118
AEM (additional)		36
Diak™1	0.5 to 0.6	0.6 to 1.0
Vulcofac® ACT-55	1	0 to 2
Alcanpoudre® DBU-70		0 to 2
Armeen® 18D	0.5	0 to 0.5
Stearic Acid	0 to 0.5	0 to 0.5
ADPA*	0.5 to 1.5	0.5 to 1.5
Plasticizer**	2 to 5	0 to 0.5
Vanfre® VAM	1	1
Carbon Black	2	2

^{* 4-}aminodiphenyl amine, is available from ChemSpec or Safic Alcan as ADPA

dupont.com

DuPont``m, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates Copyright © 2019 DuPont de Nemours Inc.

^{**} Alcanplast® PO80, TegMer® 812, or similar

Vamac® Ethylene Acrylic Elastomer Compound - Technical Data

- Fatigue resistance is optimized at 0.55phr or less of Diak™ 1, and ISO compression set is optimized at 0.8phr. VW compression set improves up to and beyond 1.0phr, although heat resistance worsens at Diak™1 levels greater than 1.0phr.
- Use at least 1phr accelerator, noting that Vulcofac® ACT-55 is a weaker accelerator than Alcanpoudre®
 DBU-70. Better release and faster cure may be achieved for molded compounds using 1.5 to 2phr DBU70.
- ADPA is the preferred anti-oxidant for VMX5000 pre-compounds, and also provides added scorch protection along with Armeen® 18D.
- Low volatile plasticizers may be used up to 10phr, depending on the low temperature requirements.
- Low levels of carbon black (any type) may be used as a colorant without negatively impacting properties.

Colored Compounds

There is a market demand for colored AEM compounds to help with product assembly. Conventional AEM compounds with mineral fillers have poor compression set properties. Since VMX5000 pre-compounds contain a non-black filler system, and exhibit excellent properties for heat ageing, and compression set, they are particularly suitable for colored AEM parts for differentiation, and optical control. For colored compounds, staining diarylamine anti-oxidant like ADPA should be avoided, and less staining Naugard® 445, or non-staining AO like Irganox® 1010 and Ultranox® 626 may be used.

Figure 4 shows VMX5015 compounds with less staining Naugard® 445, 5phr TiO_2 and 2phr pigment to produce bright colors with good heat ageing.

Figure 4 – Colored Compounds with VMX5015

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates Copyright © 2019 DuPont de Nemours Inc.

Vamac® Ethylene Acrylic Elastomer Compound - Technical Data

Formulating for Different Hardness Level

VMX5000 series pre-compounds contain filler level for a hardness of approximately 75 Shore A after vulcanization. To achieve lower hardness levels, unfilled Vamac® AEM polymer must be added to dilute and reduce the overall filler level. Figure 4 exhibits a profile of hardness range between 55 to 75 Shore A (3 sec) for VMX5015 / Vamac® Ultra IP blends in a compound formulation and curative package typical for a sealing application. Further modification can be achieved by changing curative, supplemental filler, and plasticizer level. Dilution of VMX5000 pre-compounds may be extended to provide compounds of low hardness level (37 to 47 Shore A) with relatively good properties, and processing, which is difficult to achieve with conventional black filled compounds.

Example (%): VMX5015 = 73%, Vamac® Ultra IP = 27%, ADPA = 0.93%, Stearic Acid = 0.33%, Vanfre® VAM = 0.67%, Diak $^{\text{M}}$ 1 = 0.67%, Alcanpoudre® DBU-70 = 1.33% for a hardness (3s) of 62 Shore A.

Higher hardness compounds (>75 Sh A) may be achieve with addition of supplemental filler.

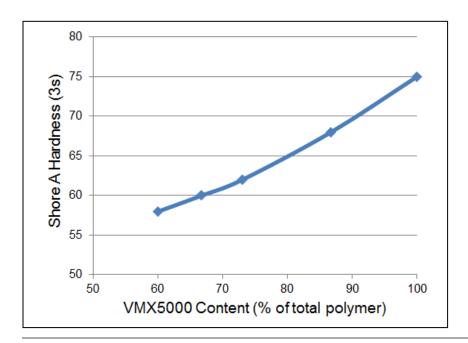


Figure 5 – AEM Blends with VMX5000 Series for Lower Hardness

dupont.com

DuPont``m, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates Copyright © 2019 DuPont de Nemours Inc.

Vamac® Ethylene Acrylic Elastomer Compound - Technical Data

Compound Comparison of VMX5000 Grades (65-70 Shore A)

The following tables compares VMX5015 and VMX5020 versus a black filled Vamac® Ultra IP compound. Two variations of red colored compounds with VMX5020 are included. The later compound is a blend of VMX5020, and Vamac® Ultra LS with higher Diak $^{\text{TM}}$ 1 level.

Table 3 – Comparison of VMX5000 Grades (65-70 Shore A)

	Vamac®			VMX5020,	VMX5020 /
Compound Formulation (phr)	Ultra IP	VMX5015	VMX5020	red	Ultra LS, red
Vamac® Ultra IP	100	17.5	17.5	17.5	
Vamac® Ultra LS					17.5
VMX5015		150			
VMX5020			150	150	150
Alcanpoudre® ADPA 75		1.5	1.5	1.5	1.5
Naugard® 445	2				
Armeen® 18D PRILLS	0.5				
Stearic Acid	2	0.5	0.5	0.5	0.5
Vanfre® VAM	1	1	1	1	1
Ultrasil® VN2				10	10
Alcanpoudre® A1100 70				0.25	0.25
Ferroxide 214 M				1.5	1.5
Spheron™ SOA (N550)	20				
Corax® N772	50				
MT Thermax® Floform N990		20	20		
Alcanplast® PO 80	10	7	7	7	7
Diak™ 1	1.4	0.9	0.9	0.8	0.9
Vulcofac® ACT-55	2	2	2	2	2

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.

Vamac® Ethylene Acrylic Elastomer Compound - Technical Data

Table 3 (continued) – Comparison of VMX5000 Grades (65-70 Shore A)

Tuble 3 (continued) Companson C	Vamac®	iluaes (os 10	J.1.0.10.1.y	VMX5020,	VMX5020 /
Rheology	Ultra IP	VMX5015	VMX5020	red	Ultra LS, red
Mooney Viscosity ML 1+4 at 100°C (I					
Initial Mooney, MU	70.8	87.0	70.7	89.7	89.8
Final Mooney, MU	49.2	56.2	45.6	47.5	49.8
Slope, lg M/g s	-0.609	-0.653	-0.605	-0.667	-0.553
Intercept Mooney, MU	13.5	13.6	11.8	11.6	14.0
MDR cure rate 15 minutes at 180°C, a	arc 0.5° (ISO (<u> 6502:1999)</u>			
ML, dNm	0.65	0.69	0.52	0.54	0.65
MH, dNm	16.45	15.03	12.40	13.28	12.19
Ts1, min	0.62	0.78	0.84	0.90	0.92
Ts2, min	0.86	1.03	1.14	1.24	1.30
T10, min	0.76	0.89	0.90	0.99	0.98
T50, min	2.46	2.58	2.56	3.00	3.10
T90, min	7.66	7.25	6.69	8.02	8.56
T95, min	9.99	9.18	8.53	10.02	10.63
Tan delta at ML	1.108	1.101	1.077	1.167	0.954
Tan delta at MH	0.009	0.045	0.047	0.047	0.049
Peak rate, dNm/min	6	6	5	5	4
Mooney Scorch 45 min at 121°C (ISC	289-2:1994)				
Initial Mooney, MU	27	41	30	29	32
Minimum Mooney, MU	17	20	17	17	19
Ts1, min	5.6	8.3	6.6	7.0	6.0
Ts2, min	7.0	9.9	7.8	8.2	6.9
T5, min	10.2	13.7	10.2	11.1	8.6
T10, min	13.7	17.4	12.6	14.0	10.6
T35, min	25.0	35.2	32.2	26.4	24.1
Point rise at 30 min		31.5	33.9		

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.

Vamac® Ethylene Acrylic Elastomer Compound - Technical Data

Table 3 (continued) – Comparison of VMX5000 Grades (65-70 Shore A)

1 1111/13000 GI	uucs (05 70 t	31101071		
Vamac®			VMX5020,	VMX5020 /
Ultra IP	VMX5015	VMX5020	red	Ultra LS, red
180°C / Post-	cure 4 hours a	at 175°C		
71.9	65.7	64.4	66.0	65.2
73.5	67.9	66.2	67.7	67.2
19.0	17.4	13.4	11.5	10.6
270	240	238	184	201
0.67	0.58	0.52	0.56	0.55
1.29	1.05	1.00	1.05	1.00
2.4	2.1	1.9	1.9	1.8
6.1	5.8	4.9	5.0	4.6
14.8	15.1	12.0		10.7
Mill (ISO 34-1	:2004)			
5.5	2.6	2.9	2.6	2.8
-36.0	-35.0	-34.4	-33.8	-33.9
7:2005. Cor 1	2008)			
		5.3	3.9	3.8
110	179	146		114
0.57	0.40	0.36	0.38	0.36
1.17	0.82		0.77	0.73
2.25		1.41	1.45	1.35
5.7	3.7	3.3	3.5	3.2
	Vamac® Ultra IP 180°C / Post-6 71.9 73.5 19.0 270 0.67 1.29 2.4 6.1 14.8 Mill (ISO 34-1 5.5 -36.0 7:2005, Cor 1:2 6.3 110 0.57 1.17 2.25	Vamac® Ultra IP VMX5015 180°C / Post-cure 4 hours at 180°C / Pos	Ultra IP VMX5015 VMX5020 180°C / Post-cure 4 hours at 175°C 71.9 65.7 64.4 73.5 67.9 66.2 19.0 17.4 13.4 270 240 238 0.67 0.58 0.52 1.29 1.05 1.00 2.4 2.1 1.9 6.1 5.8 4.9 14.8 15.1 12.0 Mill (ISO 34-1:2004) 5.5 2.6 2.9 -36.0 -35.0 -34.4 7:2005, Cor 1 2008) 6.3 6.0 5.3 110 179 146 0.57 0.40 0.36 1.17 0.82 0.74 2.25 1.58 1.41	Vamac® Ultra IP VMX5015 VMX5020 red 180°C / Post-cure 4 hours at 175°C 71.9 65.7 64.4 66.0 73.5 67.9 66.2 67.7 19.0 17.4 13.4 11.5 270 240 238 184 0.67 0.58 0.52 0.56 1.29 1.05 1.00 1.05 2.4 2.1 1.9 1.9 6.1 5.8 4.9 5.0 14.8 15.1 12.0 Mill (ISO 34-1:2004) 5.5 2.6 2.9 2.6 -36.0 -35.0 -34.4 -33.8 7:2005, Cor 1 2008) 6.3 6.0 5.3 3.9 110 179 146 112 0.57 0.40 0.36 0.38 1.17 0.82 0.74 0.77 2.25 1.58 1.41 1.45

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.

Vamac® Ethylene Acrylic Elastomer Compound - Technical Data

The conventional carbon black reference AEM compound exhibits more hardening, and greater loss of properties than the VMX5000 compounds.

Table 3 (continued) – Comparison of VMX5000 Grades (65-70 Shore A)

	V amac®			VMX5020,	VMX5020 /
Heat Ageing	Ultra IP	VMX5015	VMX5020	red	Ultra LS, red
Heat Ageing 1008 hours at 150°C					
Hardness Shore A (3s), pts	74.0	66.3	65.0	65.1	64.7
Delta Hardness, pts	2.2	0.6	0.4	-0.7	-0.7
Tensile Strength, MPa	16.6	12.4	9.3	10.1	10.1
Delta Tensile Strength, %	-12.6	-28.9	-30.8	-12.3	-5.2
Elongation at Break, %	230	216	222	217	226
Delta Elongation at Break, %	-14.8	-10.0	-6.7	17.9	12.4
50% Modulus, MPa	3.0	2.3	2.0	2.4	2.0
Delta 50% Modulus, %	23.4	11.2	4.7	25.0	8.3
100% Modulus, MPa	6.8	5.5	4.8	4.9	4.9
Delta 100% Modulus, %	11.7	-5.6	-2.3	-2.0	7.9
200% Modulus, MPa	14.9	12.0	9.2	9.9	9.6
Delta 200% Modulus, %	0.9	-20.2	-22.8		-10.5
Heat Ageing 1008 hours at 175°C					
Hardness Shore A (3s), pts	93.3	61.8	62.6	62.5	63.5
Delta Hardness, pts	21.4	-3.8	-1.8	-3.2	-1.9
Tensile Strength, MPa	9.4	12.1	11.4	9.9	9.1
Delta Tensile Strength, %	-50.5	-30.2	-15.0	-14.3	-13.9
Elongation at Break, %	37	175	158	140	127
Delta Elongation at Break, %	-86.3	-27.1	-33.6	-23.9	-36.8
50% Modulus, MPa		1.6	1.7	1.4	1.6
Delta 50% Modulus, %		-24.8	-13.1	-26.0	-11.1
100% Modulus, MPa		5.2	5.6	5.4	5.8
Delta 100% Modulus, %		-10.1	14.8	8.4	27.5

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.

Vamac® Ethylene Acrylic Elastomer Compound - Technical Data

Long term compression set at 160 to 170°C is lower for the VMX5000 compounds, and less impacted over time when cooled in the clamps compared to the black reference AEM compound. VW compression set can be made lower than what is shown for this study using higher Diak™ 1. VMX5015 is best among the VMX5000 series in VW compression set.

Table 3 (continued) – Comparison of VMX5000 Grades (65-70 Shore A)

, ,		•			
	Vamac®	VMX5015	VMX5020	VMX5020,	VMX5020 /
Compression Set	Ultra IP	VIVIXOUS	VIVIAJUZU	red	Ultra LS, red
Compression Set – type B (ISO 815-1:20	(80				
70 hours / 150°C, %	21.5	22.6	25.1	28.0	30.5
504 hours / 160°C, %	49.1	41.1	40.6	45.3	48.0
1008 hours / 160°C, %	58.0	45.0	44.8	49.3	52.9
504 hours / 170°C, %	52.3	47.9	47.1	51.3	53.9
504 hours / 180°C, %	56.3	54.2	54.0	56.0	60.5
Compression Set – type B (ISO 815-1:20	08), cooled i	n clamps for	<u>2h</u>		
24h / 150°C, %	22.7	30.6	32.8	36.4	37.3
1008h / 150°C, %	58.7	53.6	53.5	59.0	61.5
Compression Set VW (PV 3307:2004-08)), 72 hours at	: 23°C			
at 5 seconds, %	24.8	35.6	45.0	47.0	48.1
at 30 minutes, %	8.4	7.5	9.4	10.5	10.3
Compression Set VW (PV 3307:2004-08)), 22 hours at	: 150°C			
at 5 seconds, %	46.2	60.5	69.7	73.8	71.8
at 30 minutes, %	30.1	32.8	40.3	46.8	45.7
Deflection, %	51	50	49	50	49

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.

Vamac® Ethylene Acrylic Elastomer Compound - Technical Data

Table 3 (continued) – Comparison of VMX5000 Grades (65-70 Shore A)

Fluid Ageing:	Vamac®	-	-	VMX5020,	VMX5020 /
Engine Oil	Ultra IP	VMX5015	VMX5020	red	Ultra LS, red
Ageing 1008 hours at 150°C, Aeroshell	<u>Oil Diesel Ult</u>	tra, 5W-30			
Compression Set – type B (ISO 815-1:20	008), cooled i	in clamps for	2h		
CSet, (1008h / 150°C), %	46.6	48.0	51.3	52.8	58.8
Hardness Shore A (3s), pts	72.5	62.0	60.2	63.2	63.1
Delta Hardness, pts	8.0	-3.8	-4.1	-2.7	-2.1
Tensile Strength, MPa	13.5	15.3	12.2	11.8	12.5
Delta Tensile Strength, %	-28.9	-12.2	-9.1	2.5	17.6
Elongation at Break, %	139	174	173	154	154
Delta Elongation at Break, %	-48.5	-27.5	-27.3	-16.3	-23.4
25% Modulus, MPa	1.8	1.1	1.0	1.1	1.1
Delta 25% Modulus, %	37.2	1.0	3.0	1.0	13.0
50% Modulus, MPa	3.5	2.5	2.2	2.2	2.4
Delta 50% Modulus, %	44.8	18.9	13.1	15.6	31.5
100% Modulus, MPa	9.1	7.1	5.8	6.4	6.9
Delta 100% Modulus, %	49.8	22.9	19.8	26.9	49.6
Weight Change, %	3.8	5.4	4.4	5.6	3.8
Volume Change, %	6.7	7.4	6.1	7.7	5.5

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.

Vamac® Ethylene Acrylic Elastomer Compound - Technical Data

Table 3 (continued) – Comparison of VMX5000 Grades (65-70 Shore A)

Fluid Ageing:	Vamac®	-	-	VMX5020,	VMX5020 /
Reference Oil	Ultra IP	VMX5015	VMX5020	red	Ultra LS, red
Ageing 1008 h, 150°C, Lubrizol OS 2063	04				
Compression Set – type B (ISO 815-1:20	08), cooled i	n clamps for	2h		
CSet, (1008h / 150°C), %	31.1	36.0	38.2	41.3	48.4
Hardness Shore A (3s), pts	67.9	58.6	57.8	59.2	59.3
Delta Hardness, pts	-3.9	-7.1	-6.6	-6.6	-5.9
Tensile Strength, MPa	17.3	15.4	12.4	10.6	11.3
Delta Tensile Strength, %	-8.8	-11.2	-7.1	-7.6	6.6
Elongation at Break, %	173	181	188	147	151
Delta Elongation at Break, %	-35.9	-24.6	-21.0	-20.1	-24.9
25% Modulus, MPa	1.4	0.8	0.9	0.9	0.9
Delta 25% Modulus, %	10.1	-20.0	-13.0	-10.5	-10.0
50% Modulus, MPa	3.1	2.0	1.9	2.1	2.0
Delta 50% Modulus, %	29.3	-2.4	1.6	7.3	11.1
100% Modulus, MPa	8.5	6.4	5.5	6.2	6.1
Delta 100% Modulus, %	40.0	11.3	12.8	22.9	33.0
Weight Change, %	9.3	11.7	11.2	11.7	9.5
Volume Change, %	13.9	14.7	14.0	14.9	12.5

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.

Vamac® Ethylene Acrylic Elastomer Compound - Technical Data

Table 3 (continued) – Comparison of VMX5000 Grades (65-70 Shore A)

Fluid Ageing:	Vamac®			VMX5020,	VMX5020 /
Reference Oil + 10% FAM-B	Ultra IP	VMX5015	VMX5020	red	Ultra LS, red
Fluid ageing 168 hours at 150°C in Lubr	izol® OS 206	5304 +10% FA	AM-B (ISO 1	817:2011) in	<u>Autoclave</u>
Hardness Shore A (3s), pts	59.8	55.2	52.4	52.8	52.5
Delta Hardness, pts	-12.1	-10.6	-12.2	-12.9	-12.4
Tensile Strength, MPa	13.2	14.0	10.5	8.6	8.0
Delta Tensile Strength, %	-30.3	-19.3	-21.5	-25.2	-25.0
Elongation at Break, %	190	193	195	145	149
Delta Elongation at Break, %	-29.6	-19.6	-18.1	-21.2	-25.9
10% Modulus, MPa	0.3	0.3	0.3	0.3	0.3
Delta 10% Modulus, %	-49.3	-41.4	-44.2	-42.9	-40.0
25% Modulus, MPa	0.9	0.8	0.7	0.7	0.7
Delta 25% Modulus, %	-32.6	-28.6	-35.0	-33.3	-30.0
50% Modulus, MPa	2.1	1.7	1.4	1.6	1.5
Delta 50% Modulus, %	-13.0	-17.0	-24.6	-18.2	-17.7
100% Modulus, MPa	6.2	5.1	4.1	4.8	4.3
Delta 100% Modulus, %	2.3	-12.0	-16.1	-5.0	-6.6
200% Modulus, MPa			10.9		
Delta 200% Modulus, %			-8.7		
Weight Change, %	12.5	12.4	11.8	14.6	12.6
Volume Change, %	20.2	17.7	17.0	20.5	17.9

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.

Vamac® Ethylene Acrylic Elastomer Compound - Technical Data

Table 3 (continued) – Comparison of VMX5000 Grades (65-70 Shore A)

Fluid Ageing:	Vamac®	, , , , , , , , , , , , , , , , , , , ,	,	VMX5020,	VMX5020 /
Blow-By Condensate	Ultra IP	VMX5015	VMX5020	red	Ultra LS, red
Fluid ageing 24 hours at 120°C in Blow-E	2011), in Aut	<u>coclave</u>			
Hardness Shore A (3s), pts	69.1	62.8	59.8	64.6	61.8
Delta Hardness, pts	-2.6	-2.9	-4.3	-1.4	-3.4
Tensile Strength, MPa	14.5	12.9	11.6	10.8	9.5
Elongation at Break, %	253	239	238	208	194
50% Modulus, MPa	2.3	1.6	1.5	1.5	1.4
100% Modulus, MPa	5.8	3.7	3.5	3.7	3.6
Weight Change, %	0.6	5.2	5.8		
Volume Change, %	0.7	6.1	6.9		
<u>Drying</u> - Blow-By Condensate, BMW - GS	<u> 97018</u>				
Hardness Shore A (3s), pts	70.1	66.8	63.9	66.5	66.5
Delta Hardness, pts	-1.8	1.2	-0.5	0.7	1.3
Tensile Strength, MPa	18.5	16.6	13.9	11.5	12.4
Elongation at Break, %	259	238	235	199	196
50% Modulus, MPa	2.6	2.0	1.7	1.9	2.0
100% Modulus, MPa	6.9	4.9	4.3	4.7	5.2
Weight Change, %	-0.2	0.1	0.1	-0.5	-0.6
Volume Change, %	0.0	0.0	0.2	-0.8	-0.9

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.

Vamac® Ethylene Acrylic Elastomer Compound - Technical Data

Table 3 (continued) – Comparison of VMX5000 Grades (65-70 Shore A)

Fluid Ageing: AdBlue® (32% Urea Solution in Water)	Vamac® Ultra IP	VMX5015	VMX5020
Fluid ageing 168 hours at 130°C in Adbl	ue® (register	ed trademark	of BASF)
ISO 1817:2011, in Autoclave			
Hardness Shore A (3s), pts	61.8	65.4	60.9
Delta Hardness, pts	-10.1	-0.3	-3.5
Tensile Strength, MPa	18.3	12.7	11.8
Delta Tensile Strength, %	-3.3	-27.0	-11.7
Elongation at Break, %	202	343	386
Delta Elongation at Break, %	-25.2	42.9	62.2
50% Modulus, MPa	2.9	2.4	2.0
Delta 50% Modulus, %	23.0	18.0	5.2
100% Modulus, MPa	8.3	4.5	3.4
Delta 100% Modulus, %	36.7	-22.9	-29.6
Weight Change, %	33.1	25.0	29.1
Volume Change, %	35.8	24.9	29.3

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.

Vamac® Ethylene Acrylic Elastomer Compound - Technical Data

Higher Hardness Compounds – 70 to 80 Shore A

Formulating VMX5000 pre-compounds with additional filler allows for producing higher hardness compounds. The following study is made to further show the effect of carbon black filler type and level on VMX5015, and VMX5020 compounds, and compared with conventional black-filled AEM compounds for applications like bonded piston seals.

Table 4 – Higher Hardness Compounds with Added Carbon Black

	•									5020, low MT
		G/	IP /	IP /	IP/	5015,	5020,	5020,	5020,	high
Compound Formulation	G	GLS	GXF	GLS	LS	FEF	FEF	SRF	MT	Diak
Vamac® G	100	50								
Vamac® GLS		50		50						
Vamac® GXF			50							
Vamac® Ultra IP			50	50	50					
Vamac® Ultra LS					50					
VMX5015						182				
VMX5020							182	182	182	182
Alcanpoudre® ADPA 75						1.5	1.5	1.5	1.5	1.5
Naugard® 445	2	2	2	2	2					
Armeen® 18D PRILLS	8.0	8.0	8.0	8.0	8.0					
Stearic Acid Reagent	2	2	2	2	2					
Vanfre® VAM	1	1	1	1	1	1	1	1	1	1
Spheron™ SOA (N550)	25	25	25	25	25	15	15			
Corax® N772	60	60	60	60	60			20		
MT Thermax® N990									25	15
Alcanplast® PO 80	10	10	10	10	10	7	7	7	7	7
Diak™ no 1	1.5	1.5	1.5	1.5	1.3	0.9	0.9	0.9	0.9	1.2

dupont.com

DuPont``m, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates Copyright © 2019 DuPont de Nemours Inc.

Vamac® Ethylene Acrylic Elastomer Compound - Technical Data

No scorch retarder was added to the VMX5000 compounds for this study. The addition of Armeen® 18D (stearyl amine) would reduce viscosity, lower scorch times, and slow cure speed.

Table 4 (continued) – Higher Hardness Compounds with Added Carbon Black

Rheology	G	G / GLS	IP / GXF	IP / GLS	IP / LS	5015, FEF	5020, FEF	5020, SRF	5020, MT	5020, low MT high Diak
Mooney, ML 1+4 at 10	n0°C									
Initial Mooney, MU	61.7	63.1	78.6	76.3	91.9	121.3	90.9	112.1	99.9	95.4
Final Mooney, MU	42.7	41.2	55.1	54.0	62.3	76.8	60.3	60.7	58.6	53.7
r mar weeney, wie	12.7		33.1	3 1.0	02.3	7 0.0	00.5	00.7	30.0	33.1
MDR, 12 min, 180°C, a	rc 0.5°									
ML, dNm	0.63	0.65	0.82	0.84	0.97	1.02	0.74	0.79	0.74	0.59
MH, dNm	15.91	15.04	16.83	16.93	16.82	17.85	15.29	14.65	13.95	15.99
Ts1, min	0.58	0.56	0.64	0.55	0.58	0.76	0.80	0.82	0.81	0.90
Ts2, min	0.82	0.78	0.92	0.76	0.80	1.00	1.08	1.10	1.11	1.25
T10, min	0.70	0.66	0.81	0.68	0.71	0.94	0.94	0.92	0.91	1.09
T50, min	2.25	2.08	2.84	2.14	2.27	2.94	2.76	2.76	2.66	3.51
T90, min	6.67	6.85	8.06	6.93	7.17	8.20	6.86	7.03	6.69	8.86
Tan delta at MH	0.043	0.049	0.056	0.048	0.057	0.081	0.078	0.080	0.082	0.063
Peak rate, dNm/min	6	6	5	7	6	6	5	5	5	4
Mooney Scorch 45 mir	n at 121°C									
Initial Mooney, MU	23	21	29	26	32	47	35	39	38	37
Minimum Mooney, Ml	J 16	15	19	19	22	27	22	23	22	20
Ts1, min	4.5	4.5	5.9	4.7	5.5	7.8	5.8	6.0	5.9	7.1
Ts2, min	5.6	5.4	7.3	5.7	6.8	9.4	6.7	6.8	6.7	8.2
T5, min	7.9	7.4	10.7	7.8	9.8	13.2	8.8	8.6	8.3	10.5
T10, min	10.5	9.7	14.9	10.4	13.3	17.7	11.0	10.6	10.2	13.2

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.

Vamac® Ethylene Acrylic Elastomer Compound - Technical Data

Hardness of VMX5000 compounds may be adjusted by varying the addition of carbon black, and carbon black type. The VMX5000 series exhibit significantly lower IRHD hardness than conventional carbon black filled AEM compounds, especially VMX5020.

Table 4 (continued) – Higher Hardness Compounds with Added Carbon Black

										5020,
										low MT
		G/	IP/	IP/	IP/	5015,	5020,	5020,	5020,	High
Original Properties	G	GLS	GXF	GLS	LS	FEF	FEF	SRF	MT	Diak
Compression Molding 10 minutes at 18	30°C, Po	ost-cure	4 hour	s at 175	<u>°C</u>					
Initial Specific Gravity, g/cm ³	1.27	1.28	1.27	1.28	1.28	1.12	1.12	1.13	1.14	1.12
Hardness Sh A (1s), pts	80.3	81.5	81.1	80.5	80.8	79.1	73.6	74.4	72.8	72.1
Hardness Sh A (3s), pts	79.3	80.4	80.1	79.8	79.7	77.7	72.0	72.8	71.1	70.6
Hardness IRHD (Method N, ISO48:2007)	79.5	79.5	80.7	80.0	79.8	74.9	68.2	68.9	67.0	67.5
Tensile properties (type 2) at 23°C, ISO	37:200	<u>5 Cor 1</u>	2008							
Tensile Strength, MPa	16.4	16.4	17.3	16.7	17.7	18.6	14.7	14.8	15.0	18.3
Elongation at Break, %	179	174	203	184	230	190	199	194	231	207
10% Modulus, MPa	1.2	1.1	1.0	1.2	1.1	0.9	8.0	8.0	0.7	0.7
25% Modulus, MPa	2.2	2.1	1.9	2.3	2.1	1.9	1.5	1.6	1.5	1.6
50% Modulus, MPa	4.2	4.0	3.4	4.4	3.7	4.0	3.1	3.1	2.9	3.1
100% Modulus, MPa	9.3	9.3	8.3	9.8	8.4	9.5	7.4	7.4	6.6	7.6
Tear Strength type A - Trouser test pied	ces (Tea	ar propa	<u>agation</u>	<u>directio</u>	n: mill),	ISO 34-	<u>-1:2004</u>			
Tear Strength, kN/m	5.4	4.2	4.8	5.6	5.2	5.7	4.0	3.5	4.2	4.4

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.

Vamac® Ethylene Acrylic Elastomer Compound - Technical Data

Table 4 (continued) – Higher Hardness Compounds with Added Carbon Black

		•								5020, low MT
			IP/	IP /	IP /	5015,	5020,	5020,	5020,	high
Compression Set	G	G / GLS	GXF	GLS	LS	FEF	FEF	SRF	MT	DIAK
Compression Set, ISO 815-1, type B										
70 h at 150°C, %	26	31	24	27	25	25	27	27	33	25
504 h at 160°C, %	49	52	49	49	50	43	44	42.	42	37
504 h at 170°C, %	56	55	52	50	50	51	52	51	50	46
504 h at 180°C, %	66	69	62	62	61	61	61	60	57	57
504 h at 190°C, %	86	88	81	79	78	70	70	71	70	67
Compression Set, ISO 815-1:2008 (DBI	603	8), plied -	- coole	d in the	clamps	<u>: 2h</u>				
1008 h at 150°C, %	67	69	62	64	66	48	48	47	47	40
Compression Set VW (PV 3307:2004-0	8), 22	<u>2h at 150°</u>	<u>C</u>							
after 5 sec, %	41	48	43	44	41	49	62	65	59	43
after 30 min, %	31	35	29	36	28	28	38	40	33	26
Compression Set VW (PV 3307:2004-0	8), 72	2h at 23°C	<u>.</u>							
after 5 sec, %	28	32	25	28	31	36	43	45	42	26
after 30 min, %	10	11	9	10	11	8	10	10	4	7

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.

Vamac® Ethylene Acrylic Elastomer Compound - Technical Data

Six-week air oven ageing of VMX5000 compounds show significantly less change in hardness, and loss in elongation than carbon black filled AEM compounds.

Table 4 (continued) – **Higher Hardness Compounds with Added Carbon Black**

		•								5020, low MT
		G/	IP/	IP/	IP/	5015,	5020,	5020,	5020,	high
Heat Ageing	G	GLS	GXF	GLS	LS	FEF	FEF	SRF	MT	Diak
Heat Ageing 1008 h at 150°C (ISO 18	8:2007)									
Hardness Shore A (1s), pts	85.4	88.6	85.5	87.0	85.9	77.5	74.0	73.8	72.5	72.9
Delta Hardness, pts	5.2	6.8	4.6	6.5	5.3	-1.9	0.1	-0.7	-0.6	0.4
Tensile Strength, MPa	14.2	13.6	14.9	13.6	15.2	10.0	8.1	9.0	9.0	8.9
Delta Tensile Strength, %	-13	-17	-14	-19	-14	-47	-45	-41	-38	-52
Elongation at Break, %	145	134	163	140	178	174	213	189	192	206
Delta Elongation at Break, %	-19	-23	-20	-24	-23	-8	7	-3	-17	0
25% Modulus, MPa	3.2	3.5	2.7	3.4	2.9	1.8	1.5	1.5	1.4	1.3
Delta 25% Modulus, %	43	65	45	47	38	-6	-5	-9	-7	-17
100% Modulus, MPa	10.5	11.0	9.9	10.6	9.9	7.9	6.6	6.8	6.1	5.8
Delta 100% Modulus, %	13	19	19	8	18	-16	-10	-8	-8	-23
Heat Ageing 1008 h at 175°C (ISO 18	8:2007)									
Hardness Shore A (1s), pts	97.0	96.5	97.2	97.0	95.4	74.3	71.2	70.1	69.2	69.3
Delta Hardness, pts	16.8	14.9	16.1	16.5	14.0	-5.1	-2.3	-4.3	-3.7	-3.2
Tensile Strength, MPa	0.22	0.22	1.23	0.09	0.17	13.4	12.4	12.1	10.2	10.3
Delta Tensile Strength, %	-99	-99	-93	-100	-99	-28	-16	-18	-32	-44
Elongation at Break, %	0	0	0	0	0	144	137	128	123	129
Delta Elongation at Break, %	-100	-100	-100	-100	-100	-24	-31	-34	-47	-38
25% Modulus, MPa						1.0	0.94	1.04	0.84	0.85
Delta 25% Modulus, %						-48	-39	-36	-43	-45
100% Modulus, MPa						8.2	8.0	8.3	7.4	7.1
Delta 100% Modulus, %						-13	8	12	11	-7

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.

Vamac® Ethylene Acrylic Elastomer Compound - Technical Data

Table 4 (continued) - Higher Hardness Compounds with Added Carbon Black

Table 4 (continued) – nigher nardne :	ss compc	ourius wi	iii Adde	ca Carbo	OII DIACK					5020, low MT
		G/	Ρ/	IP/	IP/	5015,	5020,	5020,	5020,	high
Fluid Ageing	G	GLS	GXF	GLS	LS	FEF	FEF	SRF	MT	Diak
Fluid Ageing, 1008 h at 150°C in Petro Dexron® VI RDL 3434										
Hardness Shore A (1s), pts	81.5	86.9	80.1	86.3	84.1	71.7	68.4	68.1	67.2	68.1
Delta Hardness, pts	1.3	5.4	-1.0	6.3	3.3	-7.4	-5.1	-6.3	-5.5	-4.4
Tensile Strength, MPa	15.3	14.3	15.8	15.1	17.5	14.1	11.8	11.8	11.8	11.0
Delta Tensile Strength, %	-6.9	-12.8	-9.0	-9.6	-1.4	-24.5	-19.7	-20.4	-21.4	-40.0
Elongation at Break, %	93	76	118	77	121	139	140	127	153	155
Delta Elongation at Break, %	-48.0	-56.3	-41.9	-58.2	-47.4	-26.8	-29.7	-34.5	-33.8	-25.1
10% Modulus, MPa	1.3	2.0	1.2	2.0	1.7	0.6	0.5	0.5	0.5	0.5
Delta 10% Modulus, %	16.5	87.2	16.8	65.0	48.3	-38.0	-34.6	-39.0	-32.9	-33.8
100% Modulus, MPa			12.9		14.3	10.4	8.4	8.9	7.4	7.1
Delta 100% Modulus, %			54.8		71.3	9.7	14.8	20.6	10.8	-6.1
Weight Change, %	7.8	5.0	8.5	5.0	5.2	9.2	9.3	8.6	8.5	8.9
Volume Change, %	11.4	7.4	12.5	7.6	7.9	11	11.5	10.7	10.8	10.2
Fluid Ageing, 1008 h at 150°C in Pento	osin® FFL	-5 LV								
Hardness, Shore A (1s), pts	85	87.6	85.8	88.7	88.6	76.6	73.5	72.8	72.8	73.6
Delta Hardness, pts	4.5	6.0	4.7	8.2	7.9	-2.7	0	-1.4	-0.1	1.0
Tensile Strength, MPa	16.3	15.5	15.6	16.5	17.1	13.5	11.2	12.4	11.6	10.6
Delta Tensile Strength, %	-0.7	-5.5	-9.7	-0.8	-3.8	-27.5	-24.0	-16.2	-22.7	-42.0
Elongation at Break, %	83	84	102	83	108	167	184	137	178	193
Delta Elongation at Break, %	-53.6	-51.7	-49.8	-54.9	-53.0	-12.1	-7.5	-29.4	-22.9	-6.8
10% Modulus, MPa	2.3	2.5	1.9	2.8	2.2	0.7	0.7	8.0	0.6	0.6
Delta 10% Modulus, %	99.1	127.5	91.1	129.2	93.0	-19.6	-9.0	-8.5	-12.3	-16.2
100% Modulus, MPa				10.7	15.3	10.6	8.5	9.9	7.8	7.8
Delta 100% Modulus, %				9.1	83.6	11.5	15.4	33.6	18.1	2.6
Weight Change, %	4.4	2.3	4.5	2.8	1.6	5.9	4.9	6.2	5.5	6.3
Volume Change, %	6.3	3.3	6.8	3.9	2.7	7.2	6.1	7.2	6.5	7.0

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.